Ilm Ki Dunya for Islam and Modern Science, Islamic Videos,Education, Friendship Pictures, Walpapers, Computer Tips and Tricks
Wednesday, 27 July 2011
great Break Up Quotes
Break Up Quotes: There is definitely a numbers game when it comes to girls. Let's just say, ya know, ten girls have slipped you their number within that particular week. There is a possibility that, like, five or six may not answer. Somebody may pick up but they're busy, but probably on three or four they're probably coming over and I'm going to have to make a decision on which group of girls I want to come over for me and my boy Pauly.
for more details click here: http://www.1-love-quotes.com/quotes/category/Break+Up
for more details click here: http://www.1-love-quotes.com/quotes/category/Break+Up
Unique Volcanic Complex Discovered On Moon's Far Side
ScienceDaily (July 26, 2011) — Analysis of new images of a curious "hot spot" on the far side of the Moon reveal it to be a small volcanic province created by the upwelling of silicic magma. The unusual location of the province and the surprising composition of the lava that formed it offer tantalizing clues to the Moon's thermal history.
The hot spot is a concentration of a radioactive element thorium sitting between the very large and ancient impact craters Compton and Belkovich that was first detected by Lunar Prospector's gamma-ray spectrometer in 1998. The Compton-Belkovich Thorium Anomaly, as it is called, appears as a bull's-eye when the spectrometer data are projected onto a map, with the highest thorium concentration at its center.Recent observations, made with the powerful Lunar Reconnaissance Orbiter (LRO) optical cameras, have allowed scientists to distinguish volcanic features in terrain at the center of the bull's-eye. High-resolution three-dimensional models of the terrain and information from the LRO Diviner instrument have revealed geological features diagnostic not just of volcanism but also of much rarer silicic volcanism.
The volcanic province's very existence will force scientists to modify ideas about the Moon's volcanic history, says Bradley Jolliff, PhD, research professor in the Department of Earth and Planetary Sciences in Arts & Sciences at Washington University in St. Louis, who led the team that analyzed the LRO images.
Volcanism on the Moon
Lunar volcanism is very different from terrestrial volcanism because the Moon is a small body that cooled quickly and never developed rock-recycling plate tectonics like those on our planet.
The Moon, thought to have been created when a Mars-size body slammed into Earth about 4.5 billion years ago, was originally a hellish world covered by a roiling ocean of molten rock some 400 kilometers deep.
But because the Moon was small and had no atmosphere, the magma ocean cooled quickly, within perhaps 100 million years. Eventually lighter minerals such as feldspar crystallized out of the magma and floated to the top to create huge masses of feldspathic rock that formed the lunar highlands. Denser iron- and magnesium-rich minerals sank when they crystallized, forming the upper part of the Moon's mantle.
The differentiation of the crust and mantle was followed by a wave of volcanic activity between about 3 to 4 billion years ago, when basaltic lavas erupted on the lunar surface, filling old impact craters and other low spots to form the lunar mare.
One of the mysteries of lunar volcanism is the unequal distribution of these flood basalts. Nearly a third of the Moon's near side is covered by ancient flood basalts but the Moon's far side, where the crustal rocks are thicker, has much less.
Moreover, almost all of the volcanism on the Moon is basaltic rather than silicic, enriched in minerals containing the elements iron and magnesium rather than the elements silicon and aluminum.
for more details CLICK here:
Nanoplasmonic 'Whispering Gallery' Breaks Emission Time Record in Semiconductors
ScienceDaily (July 25, 2011) — Renaissance architects demonstrated their understanding of geometry and physics when they built whispering galleries into their cathedrals. These circular chambers were designed to amplify and direct sound waves so that, when standing in the right spot, a whisper could be heard from across the room. Now, scientists at the University of Pennsylvania have applied the same principle on the nanoscale to drastically reduce emission lifetime, a key property of semiconductors, which can lead to the development of new ultrafast photonic devices.
The research was conducted by associate professor Ritesh Agarwal, postdoctoral fellows Chang-Hee Cho and Sung-Wook Nam and graduate student Carlos O. Aspetti, all of the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science. Michael E Their research was published in the journal Nature Materials.
"When you excite a semiconductor, then it takes a few nanoseconds to get back to the ground state accompanied by emission of light," Agarwal said. "That's the emission lifetime. It's roughly the amount of time the light is on, and hence is the amount of time it takes for it to be ready to be turned on again.
"If you're making a modulator, something that switches back and forth, you're limited by this time constant. What we've done is reduced it to less than a picosecond. It's more than a thousand times faster than anything currently available."
The advancement in emission lifetime is due to the unique construction of the team's nanowires. At their core, they are cadmium sulfide, a common nanowire material. But they are also wrapped in a buffer layer of silicon dioxide, and, critically, an outer layer of silver. The silver coating supports what are known as surface plasmons, unique waves that are a combination of oscillating metal electrons and of light. These surface plasmons are highly confined to the surface the silicon dioxide and silver layers meet.
"The previous state of the art was taking a nanowire, just like ours, and laying it on a metal surface," Agarwal said. "We curved the metal surface around the wire, making a complete nanoscale plasmonic cavity and the whispering gallery effect."
For certain nanowire sizes, the silver coating creates pockets of resonance and hence highly confined electromagnetic fields within the nanostructure. Emission lifetime can then be engineered by precisely controlling high intensity electromagnetic fields inside the light-emitting medium, which is the cadmium sulfide core.
To reach an emission lifetime measured in femtoseconds, the researchers needed to optimally balance this high-confinement electromagnetic field with an appropriate "quality factor," the measurement of how good a cavity is at storing energy. To complicate matters, quality factor and confinement have an inverse relationship; the higher the quality-factor a cavity has the bigger it is and the smaller its confinement.
.
This many-orders-of-magnitude improvement could find a home in a variety of applications such as LEDs, detectors and other nanophotonic devices with novel properties.
"Plasmonic computers could make good use of these nanowires," Cho said. "We could increase modulation speed into the terahertz range whereas electronic computers are limited to a few gigahertz range."
"The same physics governs emission and absorption, so these nanowires could also be used for increasing efficiency of absorption in solar cells," Agarwal said.
The research was supported by the U.S. Army Research Office, the National Institutes of Health, the National Science Foundation, Penn's Nano/Bio Interface Center and the U.S. Department of Energy.
more details click this link: http://www.sciencedaily.com/releases/2011/07/110722132830.htm
"To live content with small means; to seek elegance rather than luxury, and refinement rather than fashion; to be worthy, not respectable, and wealthy, not rich; to study hard, think quietly, talk gently, act frankly; to listen to stars and birds, to babes and sages, with open heart; to bear all cheerfully, do all bravely, await occasions, hurry never. In a word, to let the spiritual, unbidden, and unconscious grow up through the common. This is to be my symphony."
for more detaila click here: http://www.great-quotes.com/inspirational_quotes_main.htm
for more detaila click here: http://www.great-quotes.com/inspirational_quotes_main.htm
Sunday, 24 July 2011
Subscribe to:
Posts (Atom)